uadapy.plotting package

Submodules

uadapy.plotting.distribution_plot module

class uadapy.plotting.distribution_plot.InteractiveNormal(mean: ndarray, cov: ndarray, ax: Axes, n_std: float = 1.0, extends: float = 10, epsilon: float = 10, x_label: str = '', y_label: str = '')

Bases: object

A class for interactive visualization of a bivariate normal distribution.

mean

Mean vector of the normal distribution.

Type:

np.ndarray

cov

Covariance matrix.

Type:

np.ndarray

ax

The axes object where the distribution is plotted.

Type:

matplotlib.axes.Axes

n_std

The number of standard deviations for the confidence ellipse. Default is 1.0.

Type:

float, optional

extends

Extension factor for the plot limits. Default is 10.

Type:

float, optional

epsilon

Selection tolerance for interactive manipulation. Default is 10.

Type:

float, optional

x_label

Label for the x-axis.

Type:

str, optional

y_label

Label for the y-axis.

Type:

str, optional

points

Eigenvector points for visualization.

Type:

np.ndarray

eigenvectors

Eigenvectors computed from the covariance matrix.

Type:

np.ndarray

get_ind_under_point(event)

Returns the index of the point under the given event coordinates.

Parameters:

event (matplotlib.backend_bases.MouseEvent) – Mouse event with x and y coordinates.

Returns:

Index of the closest point within the tolerance, or None if no point is close enough.

Return type:

int or None

init_points()

Computes eigenvectors and eigenvalues of the covariance matrix and initializes points for visualization.

update(plot_int: bool = False)

Updates the plot with the confidence ellipse and eigenvector lines.

Parameters:

plot_int (bool, optional) – Whether to plot eigenvectors and key points interactively (default: False).

uadapy.plotting.distribution_plot.confidence_ellipse(mean: ndarray, cov: ndarray, ax: Axes, n_std: float = 3.0, facecolor='blue', **kwargs)

Create a plot of the covariance confidence ellipse of x and y.

Parameters:
  • mean (np.ndarray) – Mean vector of the distribution.

  • cov (np.ndarray) – Covariance matrix.

  • ax (matplotlib.axes.Axes) – The axes object to draw the ellipse into.

  • n_std (float, optional) – The number of standard deviations to determine the ellipse’s radiuses. Default is 3.0.

  • facecolor (str, optional) – The fill color of the ellipse. Default is ‘blue’.

  • **kwargs (additional matplotlib.patches.Ellipse keyword arguments) – Additional optional plotting arguments.

Returns:

The confidence ellipse patch added to the axis.

Return type:

matplotlib.patches.Ellipse

uadapy.plotting.interactive_splom module

uadapy.plotting.plots2D module

uadapy.plotting.plotsND module

uadapy.plotting.utils module

uadapy.plotting.utils.create_shaded_set2_colormap(alpha_values)

Create a custom colormap by varying alpha values for each Set2 color.

Parameters: - alpha_values: list or array of alpha values to apply to each Set2 color (e.g., [0.3, 0.6, 1]).

Returns: - A custom colormap with 8 Set2 colors, each with 3 alpha variations (total of 24 colors).

uadapy.plotting.utils.generate_random_colors(n)
uadapy.plotting.utils.generate_spectrum_colors(n)
uadapy.plotting.utils.get_colors(n)

Module contents