uadapy.data package
uadapy.data.data module
- uadapy.data.data.generate_synthetic_gmm(n_classes=3, n_dims=4, random_state=0)
Generates synthetic Gaussian Mixture Model distributions. Creates multiple classes, each represented as a GMM with random number of components (1 to 10). Per component, random means and covariances are generated to form the GMM.
- Parameters:
n_classes (int, optional) – Number of classes to generate. Default value is 3.
n_dims (int, optional) – Dimensionality of the original data space. Default value is 4.
random_state (int, optional) – Random seed for reproducibility. Default value is 0.
- Returns:
List of Distribution objects, each wrapping a MultivariateGMM model.
- Return type:
list
- uadapy.data.data.generate_synthetic_timeseries(timesteps=200, trend=0.1)
Generates synthetic time series data by modeling a combination of trend, periodic patterns, and noise using a multivariate normal distribution with an exponential quadratic kernel for covariance.
- Parameters:
timesteps (int) – The time steps of the time series. Default value is 200.
- Returns:
timeseries – An instance of the TimeSeries class, which represents a univariate time series.
- Return type:
Timeseries object
- uadapy.data.data.load_iris()
Uses the iris dataset and fits a normal distribution :return:
- uadapy.data.data.load_iris_gmm(n_components=2, random_state=0)
Uses the iris dataset and fits a Gaussian Mixture Model for each class.
- Parameters:
n_components (int, optional) – Number of mixture components for each GMM. Default value is 2.
random_state (int, optional) – Random seed for reproducibility. Default value is 0.
- Returns:
List of Distribution objects, each wrapping a MultivariateGMM model fitted to one class of the iris dataset.
- Return type:
list
- uadapy.data.data.load_iris_normal()
Uses the iris dataset and fits a normal distribution :return: